Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mar Environ Res ; 196: 106437, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479296

RESUMO

In sub/tropical waters, benthic foraminifera are among the most abundant epiphytic organisms inhabiting seagrass meadows. This study explored the nature of the association between foraminifera and the tropical seagrass species H. stipulacea, aiming to determine whether these interactions are facilitative or random. For this, we performed a "choice" experiment, where foraminifera could colonize H. stipulacea plants or plastic "seagrasses" plants. At the end of the experiment, a microbiome analysis was performed to identify possible variances in the microbial community and diversity of the substrates. Results show that foraminifera prefer to colonize H. stipulacea, which had a higher abundance and diversity of foraminifera than plastic seagrass plants, which increased over time and with shoot age. Moreover, H. stipulacea leaves have higher epiphytic microbial community abundance and diversity. These results demonstrate that seagrass meadows are important hosts of the foraminifera community and suggest the potential facilitative effect of H. stipulacea on epiphytic foraminifera, which might be attributed to a greater diversity of the microbial community inhabiting H. stipulacea.


Assuntos
Foraminíferos , Hydrocharitaceae , Folhas de Planta
2.
Sci Total Environ ; 806(Pt 2): 150581, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34582868

RESUMO

Rising sea surface temperatures and extreme heat waves are affecting symbiont-bearing tropical calcifiers such as corals and Large Benthic Foraminifera (LBF). In many ecosystems, parallel to warming, global change unleashes a host of additional changes to the marine environment, and the combined effect of such multiple stressors may be far greater than those of temperature alone. One such additional stressor, positively correlated to temperature in evaporation-dominated shallow-water settings is rising salinity. Here we used laboratory culture experiments to evaluate the combined thermohaline tolerance of one of the most common LBF species and carbonate producer, Amphistegina lobifera. The experiments were done under ambient (39 psu) and modified (30, 45, 50 psu) salinities and at optimum (25 °C) and warm temperatures (32 °C). Calcification of the A. lobifera holobiont was evaluated by measuring alkalinity loss in the culturing seawater, as an indication of carbonate ion uptake. The vitality of the symbionts was determined by monitoring pigment loss of the holobiont and their photosynthetic performances by measuring dissolved oxygen. We further evaluated the growth of Peneroplis (P. pertusus and P. planatus), a Rhodophyta bearing LBF, which is known to tolerate high temperatures, under elevated salinities. The results show that the A. lobifera holobiont exhibits optimal performance at 39 psu and 25 °C, and its growth is significantly reduced upon exposure to 30, 45, 50 psu and under all 32 °C treatments. Salinity and temperature exhibit a significant interaction, with synergic effects observed in most treatments. Our results confirm that Peneroplis has a higher tolerance to elevated temperature and salinity compared to A. lobifera, implying that a further increase of salinity and temperatures may result in a regime shift from Amphistegina- to Peneroplis-dominated assemblages.


Assuntos
Foraminíferos , Proliferação de Células , Ecossistema , Salinidade , Água do Mar , Temperatura
3.
Mar Environ Res ; 161: 105084, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32889446

RESUMO

Considering the thermal limits of coastal macroalgae habitats in the South-Eastern Mediterranean, it is important to study the response of the associated meiofauna to better understand the expected feedback of ecosystems to future warming. In this study, we compared benthic foraminiferal assemblages from two common macroalgal habitats, Turf and Coralline algae, based on ecological monitoring of a thermally polluted station representing near future warming, and an undisturbed environment. None of the common local species is confined to a specific algal habitat. This implies that their existence is not threatened by the disappearance of the Coralline algae. However, most likely their community structure will be impacted with coastal warming. Species that are more affiliated with Coralline algae are highly thermally tolerant, thus their proliferation might be reduced with warming. Specifically, the negative response of Coralline algae to warming may limit the contribution of invasive species such as Pararotalia calcariformata.


Assuntos
Foraminíferos , Alga Marinha , Ecossistema , Espécies Introduzidas
4.
Geochem Trans ; 16: 2, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25949212

RESUMO

BACKGROUND: On Late Cretaceous Tethyan upwelling sediments from the Mishash/Ghareb Formation (Negev, Israel), bulk geochemical and biomarker analyses were performed to explain the high proportion of phosphates in the lower part and of organic matter (OM) preserved in upper parts of the studied section. The profile is composed of three facies types; the underlying Phosphate Member (PM), the Oil Shale Member (OSM) and the overlying Marl Member (MM). RESULTS: Total organic carbon (TOC) contents are highly variable over the whole profile reaching from 0.6% in the MM, to 24.5% in the OSM. Total iron (TFe) varies from 0.1% in the PM to 3.3% in the OSM. Total sulfur (TS) ranges between 0.1% in the MM and 3.4% in the OSM, resulting in a high C/S ratio of 6.5 in the OSM section. A mean proportion of 11.5% total phosphorus (TP) in the PM changed abruptly with the facies to a mean value of only 0.9% in the OSM and the MM. The TOC/TOCOR ratios argue for a high bacterial sulfate reduction activity and in addition, results from fatty acid analyses indicate that the activity of sulfide-oxidizing activity of bacteria was high during deposition of the PM, while decreasing during the deposition of the OSM. CONCLUSIONS: The upwelling conditions effected a high primary productivity and consequently the presence of abundant OM. This, in combination with high sulfate availability in the sediments of the PM resulted in a higher sulfide production due to the activity of sulfate-reducing bacteria. Iron availability was a limiting factor during the deposition of the whole section, affecting the incorporation of S into OM. This resulted in the preservation of a substantial part of OM against microbial degradation due to naturally-occurring sulfurization processes expressed by the high C/S ratio of 6.5 in the OSM. Further, the abundant sulfide in the pore water supported the growth of sulfide-oxidizing bacteria promoting the deposition of P, which amounted to as much as 15% in the PM. These conditions changed drastically from the PM to the OSM, resulting in a significant reduction of the apatite precipitation and a high concentration of reactive S species reacting with the OM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA